The Complexity of Star Colouring and its Relatives

Cyriac Antony (MAT17D001)

Abstract

We study the complexity of three graph colouring variants-star colouring, restricted star colouring (abbr. rs colouring), and acyclic colouring-in relation to the maximum degree of the graph. For $k \in \mathbb{N}$, the problem k-Star ColouraBLLITY takes a graph G as input, and asks whether G admits a star colouring with at most k colours. The problems k-RS Colourability and k-Acyclic Colourability are defined likewise. Consider a fixed integer $k \geq 3$, and the following questions.

1. What is the least integer d such that k-Star Colourability in graphs of maximum degree d is NP-complete?
2. What is the least integer d such that k-Star Colourability in d-regular graphs is NP-complete?
3. What is the highest integer d such that k-Star Colourability in d-regular graphs is NP-complete?

Let $L_{s}^{(k)}, \widetilde{L}_{s}^{(k)}$ and $H_{s}^{(k)}$ denote the answers to Questions 1, 2 and 3, respectively. For similar questions on rs colouring (resp. acyclic colouring), let $L_{r s}^{(k)}, \widetilde{L}_{r s}^{(k)}$ and $H_{r s}^{(k)}$ (resp. $L_{a}^{(k)}, \widetilde{L}_{a}^{(k)}$ and $H_{a}^{(k)}$) denote the answers. From reductions in the literature, it follows that $L_{s}^{(k)} \leq k(k-1+\lceil\sqrt{k}\rceil)$ and $L_{a}^{(k)} \leq k(k-1+\lceil\sqrt{k}\rceil)$. We prove linear upper bounds on $L_{s}^{(k)}, L_{r s}^{(k)}$ and $L_{a}^{(k)}$: (i) $L_{s}^{(3)}=3$ and $L_{s}^{(k)} \leq k$ for $k \geq 4$, (ii) $L_{r s}^{(3)}=3$ and $L_{r s}^{(k)} \leq k-1$ for $k \geq 4$, and (iii) $L_{a}^{(k)} \leq k+1$. We also show that (i) for $k=5$ and $k \geq 7, \widetilde{L}_{s}^{(k)}=L_{s}^{(k)}$ and $H_{s}^{(k)} \leq 2 k-4$, (ii) for $k \geq 4, \widetilde{L}_{r s}^{(k)}=L_{r s}^{(k)}$ and $H_{r s}^{(k)}=k-1$; and (iii) for $k \geq 4, \widetilde{L}_{a}^{(\bar{k})}=L_{a}^{(k)}$ and $H_{a}^{(k)}=2 k-3$. We conjecture that $H_{s}^{(k)}=2 k-4$ for $k \geq 4$, and prove this conjecture for $k=4$. In addition, we prove NP-completeness results on star colouring, rs colouring and acyclic colouring in well-known graph classes such as planar graphs and bipartite graphs; e.g.: 3-Star Colourability is known to be NP-complete in (i) planar bipartite graphs, (ii) graphs of maximum degree 4, and (iii) graphs of arbirtarily large girth; we show that it is NP-complete in the intersection of the three classes.

