Multi-class brain tumor image classification using Transfer Learning

ISUNURI B VEKATESWARLU (COE19D001)

Department of Computer Science and Engineering Indian Institute of Information Technology, Design and Manufacturing, Kancheepuram

25 Jan 2023

Abstract

Brain tumor detection has received much attention due to the rapid increase in the number of cases. In general, abnormal growth of brain cells is called a brain tumor which impacts the quality of a patient's life. A brain tumor with cancerous cells is also known as a benign tumor and can become a life-threatening disease. The brain tumors are broadly segregated into two major grading levels: low-grade and high-grade. The low-grade tumors are mostly benign while high-grade tumors are malignant in nature. World Health Organization (WHO) the grading system including four grades depending nature of severity. Brain tumor grade classification is a challenging task in brain tumor image classification. Contemporary models have employed transfer learning to attain better performance. Transfer learning is a method of deep learning that is widely used to solve new problems through the exchange of knowledge. The semantic features of a tumor have ignored in the existing models during classification decisions.

An EfficientNet and multi-path convolution with a multi-head attention network for the grade classification. A multi-path convolution with multi-head attention network performs feature enhancement task. The features obtained from the above step have classified using a fully connected double dense network. A three-class (normal/ low-grade/ high-grade) grade classification dataset from the TCIA repository has considered for experiments. The proposed model has achieved a performance of 98.35%, and 97.32% in accuracy and jaccard coefficient, respectively. Further, it have achieved similar performance on a noisy dataset.

The contemporary research requires an optimized model to exhibit better performance on larger datasets. A mixed convolution based transfer learning with a support vector classifier model is proposed to address brain tumor grade classification. The proposed model utilizes a mixed convolution network for the enhancement of pretrained EfficientNet features. The final classification results are produced using a linear support vector classifier to improve overall performance. Two publicly available datasets have utilized to perform two classification tasks including Task 1 (Grade 1/ Grade 2/ Grade 3) and Task 2 (Normal/ Low-grade/ High-grade). The proposed model attains the accuracy of 97.37% and 97.87% in Task 1 and Task 2, respectively. The proposed model attains similar results on noisy datasets and exhibits superior performance in vital metrics.