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1 Introduction

Most of the physical systems are nonlinear in nature, and they execute vibrations which

is a deviation from the exactly solvable harmonic oscillator (HO) due to the presence

of nonlinearity and are termed as anharmonic oscillators(AHO). AHOs are widely

used to describe various physical phenomena at classical as well as quantum level

[1, 2, 3, 4, 5, 6, 7] such as the molecular spectra [8], hydrogen-bonded solid [9], nu-

clear shape oscillation [10], quark-model [11] etc. Korteweg-de Vries-Burgers (KdVB)

equation [12] is one of the fascinating (1 + 1) dimensional partial differential equations

to the researchers because all three effects, such as nonlinearity, dissipation, and dis-

persion, appear together. KdVB equation describes several physical phenomena such

as propagation of undular bores in shallow water[13, 14], the flow of liquid contain-

ing gas bubble, waves in an elastic tube filled with viscous fluid, nonlinear plasma

wave. KdVB reduces to KdV and Burgers equation when dissipation and dispersion

term tends to zero, respectively. Kadmotsev-Petviashvili (KP) equation is the general-

ized form of the KdV equation with two space variables that explain the general weakly

dispersive waves. The broad applicability of such equations has attracted the attention

of researchers in science and engineering, even in present days. However, such prob-

lems are usually challenging to solve, either numerically or analytically.

Systems with nonlinearity are mostly not exactly solvable because of the presence of

nonlinear terms in the governing equations of the system. Although solving the nonlin-

ear problems numerically is sometimes easy, one desires to get the analytical solutions

of such problems as they carry more information and give a better insight into the sys-

tem. Perturbation method [15, 16] is a widely used method for finding an approximate

analytical solution to the complex nonlinear systems, especially with the nonlinear term

appearing as an additional term of small order to an exactly solvable problem. As the

equations for many nonlinear systems do not have a small perturbation term, the ap-

plication of the perturbation technique is highly restricted. There are many techniques

for solving nonlinear oscillator problems, such as the harmonic balance method [17],

weighted linearization method [18], modified Lindstedt-Poincare method [19], Ado-

mian decomposition method [20], and so on, to yield approximate analytical solutions

to such problems. Most of the methods are somewhat plagued with the complexity of

calculation and fail to properly handle problems with strong nonlinearity. Therefore, an

approximate method is still looked for, which is easy to calculate but produces highly

accurate results. Liao [21] proposed an analytical method in 1992, known as the homo-
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topy analysis method (HAM), which introduces an embedding parameter to construct

a homotopy of the given system and then analyzes it using the Taylor formula. HAM

provides a way to ensure the convergence of the solution series considering an auxiliary

parameter (h) in the construction of homotopy. J. H. He coupled the idea of homotopy

with perturbation method (HPM) for solving initial/boundary value problems for non-

linear systems [22]. The solution is given in an infinite series in this method, usually

converging to an accurate solution. [23]. Applicability of HPM in solving or analyz-

ing nonlinear systems both in the classical [24, 25] as well as the quantum mechanical

domain [26] is found to be easy and satisfactory.

2 Motivation

HPM is a simple approximation method to find an accurate analytical solution for an-

harmonic oscillators. But it is found not to be so efficient for the strongly nonlinear

oscillator. Nofal et al. [27] employed FAF followed by EBM, to study some physically

relevant anharmonic oscillators with strong anharmonicities and concluded that FAF-

EBM method gives better accuracy in comparison to that obtained by using EBM alone.

Recently, Aboodh transform-based HPM (AT) [28] has been used to find approximate

analytical solutions to various physically relevant anharmonic oscillators and is found to

produce results with better accuracy in comparison to those obtained from established

approximation methods, namely, EBM [29] and FAB-EBM for all cases. But a slight

deviation of AT solutions from the numerical solution is observed for the autonomous

conservative oscillator (ACO). This indicates a need for a method that will be simple

in performing calculations but yield results with improved accuracy. A large pool of

physical problems exists, such as shallow-water waves, nonlinear plasma waves, etc.,

which involve higher dimensions. A few attempts have been made so far to address

such problems in the light of HPM.

3 Scope and Objective

3.1 Scope

Several attempts are made to improve the accuracy of HPM, such as by (i) coupling

HPM with some other methods like variational method (ME) [30], Laplace transforms
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(LHPM) [31], Aboodh transforms (AT) [28] etc., (ii) considering an expansion of the

frequency term [26] and (iii) adopting an additional parameter in HPM [32] to get a

better convergence as it is done in HAM. But a high accuracy in the solution is yet to

achieve maintaining the simplicity of calculation.

3.2 Objective

The objective of the thesis are as follows:

• To consider an expansion of frequency term (Λ = 1/ω2) to improve the accu-

racy of calculation and to adopt an auxiliary parameter (h) [21] to control the

convergence in the framework of HPM, simultaneously. Laplace transformation

may use for the calculation of solving nonlinear differential equations to sim-

plify further. The Laplace transform-based HPM with auxiliary parameter h and

Λ-expansion (LH) is expected to solve the governing equation of strongly non-

linear equations with high accuracy but without much computational rigour. It

is intended to calculate the displacement and frequency using LH, especially for

ACO, for which solution obtained from AT show significant deviation from the

numerical solution.

• It is intended to study higher-dimensional problems governed by KdVB and KP

equations involving soliton solutions using LH.

• To formulate an improved method (LHh) over LH for getting an analytical solu-

tion to the AHO with the generalized polynomial (symmetric and asymmetric) as

the restoring force considering an expandable h in the framework of LH.

• To estimate the range of parameters of the resorting forces, which yields a solu-

tion using the new method with good accuracy.

• It is intended to study the system’s stability from a variation of critical points with

the change of each force parameter at a time, which helps one understand the state

of stability of the system for a particular value of that parameter. Such a study

helps tune a parameter to put a physical system in a desired state of stability.

• To study phase portrait to understand the stability of the systems.
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4 Description of the research work

The improved homotopy perturbation method (LH) is proposed considering an expan-

sion of frequency term (Λ = 1/ω2) and a convergence control parameter (h) in the

framework of HPM, which is further coupled with the Laplace transform to make the

calculation easier. The LH method is applied to get the approximate analytical solu-

tion to the ACO. The LH method is also used to get soliton solution for KdVB and KP

equation for different cases.

4.1 Autonomous Conservative Oscillator

A mechanical system often consists of slender cantilever beams with a flexible root

carrying an intermediate lumped mass and often undergo large-amplitude vibrations.

Such vibrating systems are known as an autonomous conservative oscillator which is

governed by a strongly nonlinear differential equation with fifth-order nonlinearity,

ẍ(1 + εx2 + αx4) + λx+ εxẋ2 + 2αx3ẋ2 + βx3 + γx5 = 0. (1)

Solution to Eq .(1) is obtained employing LH with initial conditions, x(0) = a and

ẋ(0) = 0. The displacement and frequency of ACO with first-order approximation are,

xLH(t) = a cosωt+
h

128

[
8εa3 + 7αa5 − 4Λ0βa

3 − 5γΛ0a
5
]

(cosωt− cos 3ωt)

+
ha5

384
[3α− γΛ0] (cosωt− cos 5ωt) , (2)

where, ω = (Λ0 + Λ1)
−1/2, with Λ0 = 8+3a4α+4a2ε

8λ+5a4γ+6a2β
, Λ1 = a2h

192(6a2β+5a4γ+8λ)
[96a2α −

15a6α2+96ε−12a4αε−Λ0(48β+64a2γ+138a4αβ+150a6αγ+144a2βε+156a4γε+

96a2αλ+96ελ)+Λ2
0(72a2β2+174a4βγ+105a6γ2+48βλ+64a2γλ)]. The displacement

and frequency obtained from LH are compared with the same given by AT, Hamiltonian

approach technique (HT)[33], and that obtained by fourth-order Runge-Kutta (RK4)

method. The reliability of RK4 solutions is checked by changing the mess size and

the accuracy by comparing the same from the Mathematica function NDSolve. It is

noticed that LH gives much better accuracy (at least an order of magnitude) than other

methods compared with all sets of parameters considered here. Fig.1 presents such

comparisons for parameter sets as a sample. The contribution from the second-order

approximation in LH is found not significant. LH has been found to be trustworthy
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Figure 1: The left panel displays absolute errors (εx = xRK4 − xapprox) in the approx-
imate solutions with respect to RK4 for the parameter set a = 0.2, other
parameters (OP) = 0.2. The right panels shows the variations ω with a for
OP= 1

for analyzing the phase portrait of the system. The results of Duffing oscillator, which

is a special case of ACO (α = ε = γ = 0), are compared with the modified newton

method coupled with the harmonic balance (SN) method [34]. As for accuracy, the

second-order solution obtained from both SN (SN2) and LH (LH2) are highly accurate,

but the LH2 analytical expressions of the solutions and the calculations are very simple

in comparison to SN2.

4.2 Korteweg-de Vries-Burgers equation

LH method is applied to find out the analytical approximate soliton solutions for the

KdVB equation,

ut + εuux − νuxx + µuxxx = 0. (3)

Simple and compact analytical expressions for the solutions are obtained not only for

the leading order but also for the higher-order approximations, which mimic the profiles

of the exact results. LH results are compared with those obtained from MVIA-II [35]

which is compared with several presently available methods and is claimed to be the

best among them (improved by order of magnitude). It is noted that for the KdVB

equation (when both µ and ν are equally prominent), LH produces solutions using first-

order (at most second-order) approximation with a similar or better accuracy (by order

of magnitude) in comparison to the fifth-order MVIA-II solutions, as shown in Table

1. For ν = 0 (KdV), the third-order LH gives the accuracy of the solution similar to

the fourth-order MVIA-II solution. For the case µ = 0 (Burger’s equation), fourth-

order LH solutions are found to have at least 45% less error with respect to fourth-order

MIVA-II. . Therefore, we may conclude that LH is not only a simple method to find an
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Table 1: Comparison of absolute errors (δ(approx) = |uexact−uapprox|) of the solution
of Eq. (3) with ε = 1 and t = 100 for different parameters obtained from fifth-
order MVIA-II [35], first-order and second-order LH. Here, y(−n) indicates
y × 10−n.

ν(= µ) x uexact δ(MVIA-II) δ(LH) δ(LH2)
0 -0.000360575307696737 9.426 (-08) 9.669 (-08) 9.426 (-08)

0.001 50 -0.000479999999020187 1.262 (-14) 1.261 (-14) 1.261 (-14)
100 -0.000480000000000000 1.084 (-19) 6.520 (-23) 2.601 (-23)
0 -0.003656898008681638 7.925 (-06) 1.030 (-05) 7.949 (-06)

0.01 50 -0.004799999991012855 1.227 (-12) 1.222 (-12) 1.226 (-12)
100 -0.004799999999999999 8.674 (-19) 2.519 (-22) 2.528 (-21)
0 -0.040986399012315563 3.338 (-05) 1.732 (-03) 5.558 (-05)

0.1 50 -0.047999999962120477 9.821 (-11) 9.267 (-11) 9.314 (-11)
100 -0.047999999999999999 6.939 (-15) 1.910 (-19) 1.920 (-19)
0 -0.409863990123155634 3.338 (-04) 1.720 (-02) 5.558 (-04)

1 50 -0.479999999621204775 9.851 (-10) 9.261 (-10) 9.314 (-10)
100 -0.479999999999999999 1.898 (-14) 1.909 (-18) 1.921 (-18)

approximate analytical solution, but also it yields a highly accurate solution for (1+1)-

dimensional problems with solitons solution.

4.3 Kadomtsev-Petiashvili equation

The Kadomtsev-Petviashvili (KP) equation is the (2+1)-dimensional nonlinear partial

differential equation and is given by,

(−4ut + 6uux + uxxx)x + 3uyy = 0. (4)

LH method is applied to find the approximate solution of Eq.(4) and found to be nicely

matching with the exact solution. Absolute error in the first-order and second-order

solution obtained from LH for different values of x, y, and t are calculated. It is seen

that the LH yielded a very accurate result for all values of time considered for the study.

The absolute error is very small (order of 10−5) for time, t = 0.01, and it is increased

to order of 10−3 when t = 0.1. In Fig 2, the absolute errors for the first and second-

order LH solutions with exact solution [36] for x = 0.1 are displayed. Consideration of

second-order improves the accuracy by order of magnitude two.
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Figure 2: The absolute error (uexact − uLH) of the solution obtained from the first (left)
and second (right) order LH method for x = 0.1.

4.4 Symmetric and asymmetric oscillators with polynomial restor-

ing forces

Anharmonic oscillators with polynomial restoring force,

F (x) = −
m∑
i=1

dix
i, m = 1, 2, 3 · · · , (5)

demand a method for solving the corresponding governing equation, which can handle

the symmetric and asymmetric systems in a generalized way with high accuracy. LH

method is improved by considering the expansion of convergence control parameter h

in terms of p. Expansion of the frequency term, (λ = 1/ω) instead of (Λ = 1/ω2) is

considered to widen the scope of the application of the method to the systems containing

a term with odd power of ẋ.

4.4.1 Asymmetric system (m = 2)

Let us consider the lowest order of nonlinearity ( m = 2) in Eq. (5), which represents

an asymmetric AHO, and the corresponding governing equation of the system is,

ẍ(t) + b1x+ b2x
2 = 0, (6)

where, bi = di/M , M is the mass. Variations of root mean square (rms ) errors in

x obtained from LHh, and second-order LHh (LHh2) with b2 for aR = 1 and b1 = 1

are presented in the left panel of Fig.3. Here, aR is the perpendicular distance from the

equilibrium position to the right turning point of the potential. The LHh method is found
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Figure 3: Comparisons of root mean square error (εrmsx ) in xLHh(t) and xLHh2(t) with
respect to xRK4 are displayed for different values of b2 and aR.

to yield accurate results, and a significant improvement happens when the second-order

terms are considered. A similar trend is obtained for variation of aR. Frequencies of

the AHO (6) are computed using LHh considering first-order approximation (ωLHh)

for different values of b2 and amplitudes. The results are compared and found that

ωLHh matches closely with exact frequency (ωEX) [37] (up to fifth decimal) for low

values of a for all b2. As aR is approaching the maximum value of aR ( aRmax), ωLHh
deviates very much from the corresponding exact values because the system becomes

very asymmetric (highly anharmonic) and tends to move away from that potential well

where it is confined. The results are seen to be improved by order of magnitude if the

second-order approximation is considered.

4.4.2 Symmetric system

With m = 5, and b2 = b4 = 0, the governing equation of the AHO becomes

ẍ(t) + b1x+ b3x
3 + b5x

5 = 0. (7)

LHh solutions are compared with some available other approximate methods consider-

ing RK4 results as a benchmark for different parameter sets. For all cases, LHh yields

accurate results in comparison to other methods. For an example deviations (εx) of dis-

placements obtained from LHh and coupled method of HPM and variational approach

(ME) with respect to its values calculated using RK4 is displayed in Fig.4 for ampli-

tudes a = 5, and a = 10. It is clear that for the large amplitudes (a = 5 and a = 10),

εLHh2 still remains close to zero whereas the εME increases to a larger value with the

increase in a. The solution obtained from ME gets out of phase with respect to the RK4

solution very fast.
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Figure 4: Plot of absolute errors in the approximate solutions with respect to RK4 (εxME

and εxLHh2
) for a = 5 (left) and a = 10 (right) keeping b3 = b5 = 1

4.4.3 Asymmetric system with higher-order anharmonically

Let us consider more general polynomial restoring (m = 5), and corresponding gov-

erning equation is given by,

ẍ(t) + b1x+ b2x
2 + b3x

3 + b4x
4 + b5x

5 = 0, (8)

which is not exactly solvable. Here, three sets of parameters are considered, which

corresponds to three different kinds of potential wells, namely, single well (SW: b1 =

b2 = b3 = b4 = b5 = 1), double well ( DW: b1 = b2 = b4 = b5 = 1 and b3 = −3)

and triple well (TW:b1 = b4 = b5 = 1, b2 = −2.4 and b3 = −4). Time evolution of

displacement xLHh and xLHh2 for the parameter set SW compared with that obtained

by RK4 and noticed that both curves from the approximate solutions coincide with each

other. A small disagreement of xLHh with the corresponding RK4 values are noticed for

DW and TW (deviation increases with the increase of the complexity of the structure of

the potential ). But εxLHh2
remains very close to zero for all three cases throughout the

time span considered here.

The system’s stability is studied from a variation of critical points with the change

of each force parameter at a time. The rms deviation of x due to variation all five pa-

rameters in Eq. (8) individually for a wide range of values are studied to quantify the

effect of each parameter (the strength of nonlinearity) on the accuracy of the approxi-

mate result, which facilitates understanding the behavior of the system. It is also noted

that the efficiency of LHh becomes low when the system is in proximity to an unstable

point. Therefore, there is a need to improve the LHh further.

Phase portrait obtained from LHh and LHh2 and compared with the corresponding

phase portrait from RK4 for the AHO for the three kinds of potential well in Fig.5. It is
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Figure 5: Phase plots for SW (left), DW (middle), and TW (right).

evident from the figure that the phase curves from both LHh and LHh2 match extremely

well with the RK4 one for the SW potential. Approximate phase curves deviate from

those of RK4 whenever the DW or TW potentials are considered. However, it shows

the periodic nature of the system. There are several attempts to improve the accuracy

of HPM. To gauge the efficiency of each approach, the frequencies computed for Eq.

(8) employing HPM, HPM plus 1/ω-expansion (Hω), HPM plus 1/ω2-expansion with

h (LH), Hω with h-expansion (LHh), second-order LH (LH2) and LHh2 for different

values of a∗ (initial value of displacement) and presented in Table 2. This study reveals

that consideration of expansion of the x, frequency term, λ = 1/ω and h gives the best

combination. The LHh Method not only improves the improvement of accuracy of the

solution but also widens the scope of the applicability of the method (LHh) to problems

involving odd powers of ẋ where HωS or LH fails.

Table 2: Comparison frequency obtained from HPM and its different modified versions
for the Eq.(8) with OP = 1 and absolute errors (in parenthesis) are tabulated

a∗ Exact HPM Hω LH LHh LH2 LHh2
0.1 0.9995 1.0005 0.9995 0.9995 0.9995 0.9995 0.9995

(0.0010) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000)
1 1.6267 1.6689 1.6276 1.6281 1.6265 1.6264 1.6268

(0.0419) (0.0009) (0.0014) (0.0008) (0.0003) (0.0001)
10 78.0249 82.5677 78.4497 78.4161 78.3040 77.9206 78.0291

(4.5429) (0.4248) (0.3912) (0.2791) (0.10143) (0.0042)
100 7498.54 7539.75 7536.54 7529.80 7525.54 7488.42 7498.97

(439.09) (31.25) (37.99) (27.10) (10.11) (0.42)
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5 Conclusion and Future Work

5.1 Conclusion

An expansion of frequency term (Λ = 1/ω2) is considered to improve the accuracy

of calculation, and an auxiliary parameter (h) is adapted to control the convergence

in the framework of HPM simultaneously. Laplace transform is applied for making

the calculation of solving nonlinear differential equations further simple. The Laplace

transform-based HPM with auxiliary parameter h and Λ-expansion (LH) is applied to

find the approximate analytical solution of ACO, which is a highly nonlinear system.

It is found that the values of x and ω were calculated using LH (first-order) with an

accuracy of at least an order of magnitude better than those of AT and HT for the

parameter sets considered. LH is found to be trustworthy for analyzing phase portraits

of a system. The contribution of higher-order approximation is found to be negligible

in this problem.

KdVB equation is used to model waves with dispersion, dissipation, and nonlinear-

ity in (1+1)-dimension. LH is employed to solve this equation for different special cases

and found to yield approximate analytical results with higher accuracy and simpler way

in comparisons to those by some current methods, as discussed in 4.2.

The Kadomtsev-Petviashvili (KP) equation is a (2+1)-dimensional nonlinear partial

differential equation and mostly describes weakly dispersive waves. LH is found to

produce highly accurate and compact solutions for this problem too. The absolute error

in LH with respect to the exact solution is very low, such as the maximum error from

the first-order calculation is of the order of 10−3 (for the parameter range considered)

LH method is improved (LHh) by considering the expansion of convergence control

parameter h in terms of p. Expansion of the frequency term, λ = 1/ω instead of Λ =

1/ω2 is considered to widen the scope of the application of the method It is found that

the values of x and ω calculated using LHh agree very closely with the corresponding

exact (or RK4) results even for both symmetric and asymmetric systems It is noted that

phase plots using LHh agree with those obtained from RK4 for the single-well, but

some deviations are noticed for double and triple well systems. The enhancement of

accuracy in ω for different modified schemes of HPM is studied, and it is found that

the performance of LHh is better than other versions of HPM. The rms error with the

variation of parameters is studied, which enables us to estimate the range of parameters
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of the resorting forces where the new method yields good accuracy. The stability of

the system is studied from a variation of critical points with the change of each force

parameter at a time. This study helps to understand the state of stability of the system

for a particular value of that parameter which may help one tune a parameter to put a

physical system in a desired state of stability.

5.2 Future scope

1. Apply the improved homotopy perturbation method (LHh) in velocity-dependent

oscillators such as the damped Duffing oscillator, and work progresses

2. Apply the LHh to physically relevant problems of other fields of science such as

fluid dynamics, quantum mechanics, etc.
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