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1 Abstract
Star colouring, restricted star colouring (abbreviated rs colouring) and acyclic
colouring are variants of graph colouring used as models in the computation of
sparse Hessian matrices [12, 13]. We study the complexity of these three colouring
variants (i) in well-known graph classes such as planar graphs and bipartite
graphs, and (ii) with respect to the maximum degree of the graph, focusing
on graphs of maximum degree d and d-regular graphs. For a fixed k ∈ N, the
problem k-Star Colourability takes a graph G as input, and asks whether G
admits a k-star colouring. The problems k-RS Colourability and k-Acyclic
Colourability are defined likewise.

Note that 3-Star Colourability is known to be NP-complete in (i) planar
bipartite graphs [1], (ii) graphs of maximum degree 4 [15], and (iii) graphs of
arbitrarily large girth [2]; we show that it is NP-complete in the intersection
of the above three classes. Other results we prove include NP-completeness of
4-Star Colourability in planar 4-regular graphs, NP-completeness of k-RS
Colourability in planar bipartite graphs for each k ≥ 3, an inapproximability
result on rs colouring, and an O(n3)-time algorithm to test whether a chordal
graph is 3-rs colourable.

For graph-theoretic problems, the complexity in relation to one fixed graph
parameter is attracting attention recently (see [5, 17]). Brause et al. [5] studied
the complexity of 3-Star Colourability and 3-Acyclic Colourability
with respect to the diameter of the graph. We study the complexity of k-Star
Colourability, k-RS Colourability and k-Acyclic Colourability with
respect to the maximum degree of the graph for k ≥ 3.

Let us consider graphs of maximum degree d. For k ≥ 3, there exists a
d∗ ∈ N such that k-Star Colourability in graphs of maximum degree d∗
is NP-complete (e.g.: we prove this for d∗ = k). Also, if k-Star Colourability
is NP-complete for graphs of maximum degree d, then it is NP-complete for
graphs of maximum degree d+ 1. Hence, there exists a d0 ∈ N such that k-Star
Colourability in graphs of maximum degree d is NP-complete for all d ≥ d0.
The same applies to k-RS Colourability and k-Acyclic Colourability.
We study the least integer d such that k-Star Colourability (resp. k-RS
Colourability or k-Acyclic Colourability) is NP-complete for graphs of
maximum degree d, and denote it by L̃(k)

s (resp. L̃(k)
rs or L̃(k)

a ). From reductions in
the literature [6, 7], it follows that k(k − 1 +

⌈√
k
⌉
) is an upper bound for L̃(k)

s

and L̃(k)
a . We prove linear upper bounds on L̃(k)

s , L̃(k)
rs and L̃(k)

a : (i) L̃(3)
s = 3 and

L̃
(k)
s ≤ k for k ≥ 4, (ii) L̃(3)

rs = 3 and L̃(k)
rs ≤ k − 1 for k ≥ 4, and (iii) L̃(k)

a ≤ k + 1

for k ≥ 3. For k = 5 and k ≥ 7, we improve the upper bound on L̃(k)
s to k − 1.

Let us shift our focus to the class of d-regular graphs. In this thesis, we show
that for each k ∈ N, there exist d1, d2 ∈ N such that k-Star Colourabil-
ity (resp. k-RS Colourability or k-Acyclic Colourability) in d-regular
graphs is polynomial-time solvable whenever d ≤ d1 or d ≥ d2. Hence, if k-Star
Colourability in d∗-regular graphs is NP-complete for some d∗ ∈ N, then there
exists a least integer d (resp. highest integer d) such that k-Star Colourabil-
ity in d-regular graphs is NP-complete, which is denoted by L

(k)
s (resp. H(k)

s ).
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The definitions of L(k)
rs , H(k)

rs , L(k)
a and H

(k)
a are similar. We show that (i) for

k = 5 and k ≥ 7, L(k)
s = L̃

(k)
s and H(k)

s ≤ 2k − 4, (ii) for k ≥ 4, L(k)
rs = L̃

(k)
rs and

H
(k)
rs = k − 1; and (iii) for k ≥ 4, L(k)

a = L̃
(k)
a and H(k)

a = 2k − 3. We conjecture
that H(k)

s = 2k−4 for k ≥ 4, and prove this for k = 4. For k ≥ 4, H(k)
s = 2k−4 if

and only if k-Star Colourability is NP-complete for (2k− 4)-regular graphs.
We study the structure of (2k − 4)-regular k-star colourable graphs with k ≥ 4,
or equivalently 2p-regular (p + 2)-star colourable graphs with p ≥ 2. For every
d ≥ 2 and every d-regular graph G, we prove a lower bound of d(d+4)/2e colours
to star colour G. Hence, for p ≥ 2, at least p + 2 colours are required to star
colour a 2p-regular graph G; that is, 2p-regular (p + 2)-star colourable graphs
form a class of extremal graphs with respect to our lower bound. We characterise
this class of extremal graphs in terms of (i) bicoloured components, (ii) graph
orientations, and (iii) locally constrained graph homomorphisms. For instance,
we show that for each p ≥ 2, a 2p-regular graph G admits a (p+2)-star colouring
if and only if G admits a (p+ 2)-colouring such that every bicoloured component
is isomorphic to K1,p. For p ≥ 2, we show a number of properties of 2p-regular
(p+2)-star colourable graphs G including the following : (i) |V (G)| is divisible by
(p+ 1)(p+ 2), (ii) G is (diamond, K4)-free, (iii) χ(G) ≤ 3 log2(p+ 2), and (iv) if
G is K1, p+1-free, then G is a clique graph. For p ≥ 2, we construct a 2p-regular
(p + 2)-star colourable vertex-transitive graph G2p and a 2p-regular (p + 2)-star
colourable Hamiltonian graph on t(p+1)(p+2) vertices for each t ∈ N. We prove
that a K1,p+1-free 2p-regular graph G with p ≥ 2 is (p + 2)-star colourable if and
only if G admits a locally bijective homomorphism to G2p. Moreover, for every
3-regular graph G, the line graph of G is 4-star colourable if and only if G is
bipartite and distance-two 4-colourable.

2 Objectives
• To study the complexity of k-Star Colourability, k-RS

Colourability and k-Acyclic Colourability
(a) in well-known graph classes such as planar graphs and bipartite graphs,

(b) in graphs of maximum degree d and d-regular graph, focusing on the
values of L̃(k)

s , L(k)
s , H(k)

s , L̃(k)
rs , L(k)

rs , H(k)
rs , L̃(k)

a , L(k)
a and H(k)

a .

• For each p ≥ 2, characterise 2p-regular (p+ 2)-star colourable graphs.

3 Existing Gaps Which were Bridged
Analysing the boundary between easy (i.e., polynomial-time solvable) and hard
(e.g., NP-complete) problems is a common theme in complexity theory [11].
Studying the change in the complexity of a problem in response to a change in a
single parameter falls in this category. Brause et al. [5] studied the complexity of
3-Star Colourability and 3-Acyclic Colourability with the diameter of
the graph as the parameter. A similar investigation of the complexity of colouring
variants such as star colouring with the maximum degree as the parameter
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has not been done before (to the best of our knowledge). We investigate the
complexity of k-Star Colourability, k-RS Colourability and k-Acyclic
Colourability with the maximum degree as the parameter.

We also studied the complexity of star colouring, rs colouring acyclic colouring
in some well-known graph classes. The problem Star Colourability takes a
graph G and a positive integer k as input, and asks whether G admits a k-star
colouring. The problems RS Colourability and Acyclic Colourability are
defined likewise. Table 1 and Table 2 give an overall picture of their complexity
(an entry ‘?’ indicates that the status is unknown). In both tables, our results
are highlighted.

Table 1: Complexity of Acyclic, Star and RS Colourability.

Graph class Acyclic
Colourability

Star
Colourability

RS
Colourability

Planar NPC [19] NPC [1] NPC
Bipartite NPC [6] NPC [7] NPC

Co-bipartite ? NPC NPC
Split P [14] ? P

Cograph P [16] P [16] P
Planar ∩ girth ≥ 7 P [4] NPC NPC

Table 2: Complexity of k-Acyclic Colourability, k-Star Colourability
and k-RS Colourability for k ≥ 3.

Graph class k-Acyclic
Colourability

k-Star
Colourability

k-RS
Colourability

Bipartite NPC [6] NPC [7] NPC
Co-bipartite P [2] P P

Chordal P [14] ? P for k = 3
? for k ≥ 4

Planar NPC for k ≤ 4 [19]
P for k ≥ 5 [3]

NPC for k = 3 [1]
NPC for k = 4
? for 5 ≤ k ≤ 19
P for k ≥ 20 [1]

NPC

We proved the first NP-completeness and inapproximability results on rs
colouring (an open problem in [20]), and improved a number of results on star
colouring and acyclic colouring as shown below.

(a) To star colour a 3-regular graph, at least 4 colours are needed [21], and to
star colour a d-regular graph, at least d(d+3)/2e colours are needed [9] (this
bound is proved for the hypercube Qd in [10]).
We prove that for d ≥ 2, at least d(d + 4)/2e colours are required to star
colour a d-regular graph, and this bound is attained for each d.
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(b) 3-Star Colourability is known to be NP-complete in (i) planar bipartite
graphs [1], (ii) graphs of maximum degree 4 [15], and (iii) graphs of
arbitrarily large girth [2]; we show that it is NP-complete in the intersection
of the above three classes (i.e., planar bipartite graphs of maximum degree 4
and arbitrarily large girth).

(c) From the reduction of Coleman and More [7] (resp. Coleman and Cai [6]),
it follows that for k ≥ 3, k-Star Colourability (resp. k-Acyclic
Colourability) is NP-complete for bipartite graphs of maximum degree
k(k− 1+

⌈√
k
⌉
); we bring down the maximum degree from k(k− 1+

⌈√
k
⌉
)

to k (resp. k + 1).

(d) Dvorák et al. [8] proved that for every 3-regular graph G, the line graph of G
is 4-star colourable if and only if G admits a locally bijective homomorphism
to the hypercube Q3. We prove that for every 3-regular graph G, the line
graph of G is 4-star colourable if and only if G is bipartite and distance-
two 4-colourable. Moreover, we put their result in a different perspective
by showing that an arbitrary K1,p+1-free 2p-regular graph G is (p + 2)-star
colourable if and only if G admits a locally bijective homomorphism to G2p

(this is interesting because line graphs are K1,3-free, and G4
∼= L(Q3)).

(e) Ochem [19] proved that 3-Acyclic Colourability is NP-complete for
bipartite graphs of maximum degree 4. Mondal et al. [18] proved that
4-Acyclic Colourability is NP-complete for graphs of maximum de-
gree 5.
We prove that for k ≥ 3, k-Acyclic Colourability is NP-complete for
bipartite graphs of maximum degree k+1, thereby generalising the result of
Ochem, and adding bipartiteness to the result of Mondal et al.

4 Most Important Contributions

(a) For d ≥ 3, we prove that χs(G) ≥ d(d + 4)/2e for every d-regular graph
G, and we characterise even-degree regular graphs that attain this bound in
terms of (i) bicoloured components, (ii) graph orientations, and (iii) locally
constrained graph homomorphisms.

(b) For p ≥ 2, 2p-regular (p + 2)-star colourable graphs G have the following
properties: (i) the number of vertices in G is divisible by (p+1)(p+2), (ii) G
does not contain diamond or circular ladder graph CL2r+1 as a subgraph for
any r ∈ N, (iii) α(G) > |V (G)|/4, and (iv) χ(G) ≤ 3 log2(p+ 2).

(c) For p ≥ 2, we construct a 2p-regular (p+2)-star colourable vertex-transitive
graph G2p. For p ≥ 2 and t ∈ N, we construct a 2p-regular (p + 2)-star
colourable Hamiltonian graph on t(p + 1)(p + 2) vertices; for p = 2, the
graphs constructed are also planar (see Figure 1).
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(a) For t = 1 (b) For t = 2

Figure 1: First two members of a family of planar 4-regular 4-star colourable
Hamiltonian graphs on 12 t vertices.

(d) Let p ≥ 2, and let G be a K1,p+1-free 2p-regular graph. We prove that
G is (p + 2)-star colourable if and only if G admits a locally bijective
homomorphism to G2p. If G is (p+2)-star colourable, then G[NG(v)] ∼= pK2

for every vertex v of G, and thus G is a clique graph and K(K(G)) ∼= G.

(e) 3-Star Colourability is NP-complete for planar bipartite graphs of
maximum degree 3 and arbitrarily large girth.

(f) Given a graph G, it is coNP-hard to test whether G has a unique 3-star
colouring up to colour swaps 1.

(g) Let k-Star Colourability(bipartite, max. deg. k) denote the restriction
of k-Star Colourability to the class of bipartite graphs of maximum
degree k. For k ≥ 3, k-Star Colourability(bipartite, max. deg. k) is
NP-complete, and the problem does not even admit a 2o(n)-time algorithm
unless Exponential Time Hypothesis (ETH) fails. Hence, L̃(k)

s ≤ k for k ≥ 3.

(h) For every 3-regular graph G, the line graph of G is 4-star colourable if and
only if G is bipartite and distance-two 4-colourable.
As a result, 4-Star Colourability is NP-complete for planar 4-regular
graphs, and thus H(4)

s = 4.

(i) For k = 5 and k ≥ 7, k-Star Colourability is NP-complete for graphs
of maximum degree k − 1, and as a result L̃(k)

s ≤ k − 1 and L(k)
s = L̃

(k)
s .

(j) For each k ≥ 3, it is NP-complete to test whether a k-star colourable graph
is k-rs colourbale.

(k) For the class of co-bipartite graphs, Star Colourability and RS Coloura-
bility are NP-complete, whereas k-Star Colourability and k-RS
Colourability are polynomial-time solvable for each k.

(l) An O(n)-time algorithm to decide 3-RS Colourability in trees, and an
O(n3)-time algorithm to decide 3-RS Colourability in chordal graphs.

1G has a unique 3-star colouring up to colour swaps if (i) G admits a 3-star colouring f1,
and (ii) for every 3-star colouring f2 of G, there exists a permutation σ of colours such that
f2(v) = σ(f1(v)) for every vertex v of G
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(m) For k ≥ 3, k-RS Colourability is NP-complete for planar bipartite
graphs of maximum degree k and arbitrarily large girth. As a result, L̃(k)

rs ≤ k
for k ≥ 3, and thus L̃(3)

rs = 3.

(n) 4-RS Colourability is NP-complete for planar graphs of maximum
degree 3 and girth 5.

(o) For k ≥ 4, k-RS Colourability is NP-complete for triangle-free graphs
of maximum degree k − 1, and thus L̃(k)

rs ≤ k − 1.

(p) For k ≥ 4, we have L(k)
rs = L̃

(k)
rs and H(k)

rs = k − 1.

(q) For all ε > 0, it is NP-hard to approximate the problem of rs colouring a given
graph with the minimum number of colours (i.e., Min RS Colouring)
within n

1
3
−ε, where n is the number of vertices in the input graph.

(r) Let k-Acyclic Colourability (bipartite, max. deg. k + 1) denote the
restriction of k-Acyclic Colourability to the class of bipartite graphs
of maximum degree k+1. For k ≥ 3, k-Acyclic Colourability(bipartite,
max. deg. k + 1) is NP-complete, and the problem does not even admit a
2o(n)-time algorithm unless ETH fails. Hence, L̃(k)

a ≤ k + 1 for k ≥ 3.

(s) For k ≥ 4, we have L(k)
a = L̃

(k)
a and H(k)

a = 2k − 3.

(t) For k ≥ 3, given a graph G, it is coNP-hard to test whether G admits a
unique k-acyclic colouring up to colour swaps and automorphisms 2.

5 Conclusions
We studied the complexity of star colouring, rs colouring and acyclic colouring in
some well-known graph classes such as planar graphs and bipartite graphs, and
improved some known NP-completeness results. In particular, we studied their
complexity with respect to the maximum degree of the graph. For k ≥ 3, we
established linear upper bounds (close to k) on L̃(k)

s , L̃(k)
rs and L̃(k)

a . For the class
of regular graphs, we arrive at the following conclusion. Although there exist
integers k and d such that the complexity of k-Star Colourability in graphs
of maximum degree d differ from that in d-regular graphs, study of L(k)

s is tied to
the study of L̃(k)

s (see Result (i) in Section 4). The same is true for rs colouring and
acyclic colouring (see Results (p) and (s) in Section 4). An important consequence
of our results is that finding the value of L̃(k)

rs (resp. L̃(k)
a ) suffices to characterize the

values of d for which k-RS Colourability (resp. k-Acyclic Colourability)
in d-regular graphs is NP-complete. Formally, for k ≥ 4, k-RS Colourability
(resp. k-Acyclic Colourability) in d-regular graphs is NP-complete if and
only if L̃(k)

rs ≤ d ≤ k−1 (resp. L̃(k)
a ≤ d ≤ 2k−3). It is unknown whether a similar

2G has a unique k-acyclic colouring up to colour swaps and automorphisms if (i) G admits a
k-acyclic colouring f1, and (ii) for every k-acyclic colouring f2 of G, there exists a permutation
σ of colours and an automorphism ψ of G such that f2(ψ(v)) = σ(f1(v)) for every vertex v of G
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result holds for k-Star Colourability as well. The following are some other
open problems related to this work.
(a) For each k ≥ 3, find L̃(k)

s , L̃(k)
rs and L̃(k)

a .

(b) For k ∈ {4, 6}, is k-Star Colourability NP-complete for graphs of
maximum degree k − 1?

(c) For p ≥ 2, is (p + 2)-Star Colourability NP-complete for 2p-regular
graphs?
(We proved this for p = 2)

(d) For p ≥ 2, characterise (2p− 1)-regular (p+ 2)-star colourable graphs.

For p ≥ 2, we characterised 2p-regular (p + 2)-star colourable graphs in
terms of (i) bicoloured components, (ii) graph orientations, and (iii) locally con-
strained graph homomorphisms. To this end, we introduced two notions called
out-neighbourhood bijective homomorphisms and colourful Eulerian orientations.
Studying the properties of out-neighbourhood bijective homomorphisms and com-
paring them to the properties of locally bijective homomorphisms is an important
future direction. We proved that the diamond graph does not admit any colourful
Eulerian orientation. Characterisation of graphs that do not admit any colourful
Eulerian orientation is an interesting future direction.

6 Organization of the Thesis
The proposed outline of the thesis is as follows:
(a) Chapter 1: Preliminaries

(b) Chapter 2: Introduction and Important Notions

(c) Chapter 3: Restricted Star Colouring

(d) Chapter 4: Star Colouring of Bounded Degree Graphs and Regular Graphs

(e) Chapter 5: Hardness Transitions of Star Colouring

(f) Chapter 6: Acyclic Colouring

(g) Chapter 7: Conclusion
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